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Thermal conduction in a one-dimensional anharmonic lattice is investigated with the use of homo-
geneous nonequilibrium molecular dynamics. This approach enables us to obtain thermal conductivity
as a function of temperature. Coherent excitations are observed to play an important role in transport-
ing energy, especially when an external “field” becomes large.
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I. INTRODUCTION

Since the classical work by Fermi, Pasta, and Ulam
(FPU) on equipartition of energy among phonon modes
[1], much attention has been paid to dynamical properties
of a one-dimensional (1D) anharmonic lattice to elucidate
the role played by nonlinearity in the interaction among
the neighboring particles. The main concern is centered
around the fundamental problems such as ergodicity
(thermalization) [2,3] and thermal conductivity [4-7].
Recently we observe a new surge of interest in this field
due to its close relation to chaos in Hamiltonian or more
generally in dynamical systems.

At the time of FPU experiments, it was considered that
the presence of nonlinearity in the interaction, which
gives rise to energy exchange among phonon modes,
would be sufficient to cause thermalization, or an ap-
proach to an equilibrium state. Contrary to the expecta-
tion, FPU found that equipartition of energy, which is
necessary for ergodicity to hold, is not realized and that
there exist some recurrence phenomena [1]. This ergodi-
city problem in a 1D lattice has since been studied inten-
sively with use of various methodologies such as non-
linear wave modulation [8], curvature of a potential sur-
face in differential topology [9], and so on, besides numer-
ical experiments.

Lattice thermal conductivity A has also been attracting
much interest from many researchers. For a harmonic
lattice, there is no mechanism for scattering phonons and
the conductivity A is known to diverge [10]. When non-
linearity is plugged in, the phonon mean free path be-
comes finite and we expect to have finite A. However, it
is by no means clearly understood how much nonlinearity
is necessary in order to get finite A nor how A depends on
temperature.

Numerical experiments based on molecular-dynamics
(MD) techniques have been playing a most important role
in this field and they may be roughly classified into either
an equilibrium (E) or a nonequilibrium (NE) experiments.
In the EMD, one calculates the equilibrium time correla-
tion function (TCF) of the heat flux operator J, and uti-

1063-651X/95/52(1)/234(6)/$06.00 52

lizes the Green-Kubo formula, like Eq. (16) below, to ob-
tain thermal conductivity A [4,5]. This approach is wide-
ly used especially in studies on liquids [11], which is,
however, known to be much more expensive in terms of
computer CPU time than by direct NEMD calculations.

In the NEMD experiments, two heat reservoirs with
high and low temperatures T and T; are attached on
both sides of the lattice [S-7]. By measuring the average
heat flux and the (internal) temperature gradient one can
calculate A as the ratio of the two quantities. We notice,
however, some disadvantages inherent in this approach.
First, in order to obtain a discernible temperature gra-
dient, one usually imposes (unphysically) a large tempera-
ture gradient and consequently one cannot obtain the
conductivity extrapolated to zero gradient and moreover
one cannot identify the intrinsic temperature 7 of the sys-
tem. Thus it is impossible to obtain T dependence of A.
Second, since the system is not spatially homogeneous,
one cannot use the periodic boundary condition and one
has to simulate a system with many particles (N =~ 10000)
[7]. Third, the temperature gradient set by an experi-
menter, VI'=(Ty— T, )/L, with L the length of the sys-
tem, is usually larger than the internal gradient (VT),,
which is realized inside the system [6,7]. Despite these
difficulties, it is now observed by EMD and NEMD ex-
periments for many model systems, such as the FPU lat-
tice and the diatomic Toda lattice, that a 1D nonlinear
lattice can support the temperature gradient and thus the
normal heat conduction or the Fourier heat law holds so
long as some conditions on strength of nonlinearity VT
and the system size N are satisfied [4-7].

In this paper we take quite a different scheme of
NEMD, which enables us to employ a periodic boundary
condition, thus removing many difficulties encountered in
the traditional NEMD explained above. In Sec. II we ex-
plain an isothermal linear response theory (LRT) and a
new NEMD, due to Evans [12], which is based on the
LRT. In Sec. III we formulate heat conductivity in a 1D
lattice and finally in Sec. IV numerical results of our
homogeneous NEMD and some discussions are present-
ed.
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II. HOMOGENEOUS NEMD

Following Evans [12] and Evans and Morriss [13], we
first summarize briefly the isothermal LRT and its impli-
cation on NEMD for transport coefficients to make the
paper self-contained. It seems that at the moment this
approach is well known only to researchers in liquid
physics. We consider the following equation of motion
for the set of variables (q,p)={q;,p;}:

q;=dq;/dt=p;/m +C,F,(t) ,
p;=dp;/dt=F,;+D,F,(t)—ap; .

If we put F,(¢)=0 and a=0, Eq. (1) is reduced to the
equation of motion derivable from the Hamiltonian

H=3p?}/2m)+®=K+® , )

(1)

with K and ® denoting the total kinetic and potential en-
ergy, respectively. F,(t) represents some external effects
with C;(q,p) and D;(q,p) denoting the coupling vari-
ables. Along with Evans [12] and Evans and Morriss
[13], we will impose an adiabatically incompressible
phase-space(AIT") condition on C; and D;, which states
that under the adiabatic condition a =0,

> [9p; /0p; +3q,/9q; ]=0 . (3)

With use of the method. of least constraint, « in Eq. (1) is
determined to be [13,14]

a=3{F;-p; +D;-p;F, (1)} /Zp}
=qyt+a,F,(t) . (4)
It is easily confirmed that if dynamics is governed by Eq.
(1) with Eq. (4) the kinetic energy K is kept constant,
K(t)=K,.

The LRT is formulated based on the Liouville equation
for the distribution function f(q,p,?),

of /ot=—iL,f —iL,(8)f , (5)
with
iLof=3,{3/0q;[(p;/m)f]
+3/0p;[(F;—aop; )f1} » (6)
iL(t)f =3,{3/9q;[C;f]
+9/3p;[(D; —a,p;)f1}F,(t) . (7)

The external “force” F,(t) is operative for ¢ >0 and let us
first specify the thermodynamic state (ensemble) of our
system at t=0, which is consistent with df /dt=—iL,f
for ¢t <0. For this purpose we note that the Liouville
equation, for the case F,(¢#)=0, can be rewritten as

df /dt=3f /3t +q-3f /dq+p-df /3p=3Nayf , (8)

where contributions of relative order O(1/N) are
neglected. Since

d®/dt=—3 F;:p,/m =—a,3 p}/m =—2aK,, (9)

we see that d(Inf)/dt = —(3N /2K ,)d® /dt. From this
and the fact that K (1)=K,=3NkyzT /2, we may assume

that
flg,p,t =0)=f . =exp{—P@/(kzT)}8(K —K,)/Z ,
(10)

where Z is the normalization. It is seen that the potential
energy is canonically and the kinetic energy is micro-
canonically distributed [13].

For ¢t >0 the external force causes f(q,p,?) to deviate
from fq. If we are to calculate Af=f—f eq UP to linear
order in F,(t), we have an equation for Af,
OAf /3t +iLoAf = —iL(1)f.q, which is easily solved to
give

Af=——f0’ds exp{ —iLo(t —$)}iL{(5)f g - (11)
After some algebra it is seen that
iLl(t)feq:(kBT)~1fequ(t)2{Ci’Fi_Di'pi/m} .
(12)

The important observation to be made is that the right-
hand side of Eq. (12) is related to the ratio of adiabatic
(a=0) change of the internal energy H, Eq. (2),

(dH /dt),g=—F,(t) 3{C;F;,—D;'p,/m}
=—F,(t\, - (13)
From Egs. (11)—(13) we see that
Af(q,p,t)=—(kgT)™! fotds exp{ —iLy(t —5)}

X feqadFe(s) - (14)
If we are interested in a dynamical variable B(q,p) whose
equilibrium average vanishes, (B)eg
Equdefeq==0, we see that (B(1))
= [dqdpB{f.,+Af(q,p,1)} is given by
(B(1))= —(kBT)—lfO’dsw (2 =5 40 ) egFe(s)
+O(F2) . (15)

We note that time evolution of B(¢) on the right-hand
side of Eq. (15) is governed by Egs. (1) and (4) with
F,(:)=0. The LRT presented in Eq. (15) is called an er-
godically consistent LRT in [13] and it has some merits
as discussed below.

With use of Eq. (15) one can calculate transport
coefficients as follows. First, let us assume that a trans-
port coefficient M is expressed, as usual, as

M:cfo“’dzum(tu,,, Yeq » (16)

where C is a constant. If one could choose C; and D; in
Eq. (1) so that J,4 in Eq. (13) becomes identical to —J,,,,
one could set B =J,, and F,(t)=F, to have

Flimo lim {J,,(¢))=F,M /(CkgT) .

—0t—> 00

In NEMD simulation, we solve Egs. (1) and (4) numeri-
cally and calculate lim, _, (J,,(t)) as a time average and
M is obtained from
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M= lim_ lim (CkyT)(J,, (1)) /F, . (17)
—0t— o

Since our system is thermostated, we can simulate our
system with F, kept finite for long-enough time. If not
thermostated, the temperature of the system increases
due to the external force and the order of taking the two
limiting procedure should be reversed, resulting in some
difficulties in numerical calculations of M. In the calcula-
tion of the lattice thermal conductivity we precisely fol-
low this procedure presented above.

III. THERMAL CONDUCTIVITY OF A 1D LATTICE

We consider a one-dimensional (1D) lattice with N
atoms put along the x axis with a lattice constant a.
Each atom is allowed to move in the y direction, perpen-
dicular to the x axis, and we denote by g; the displace-
ment of the ith atom and by p; the corresponding
momentum. It is noted that the equilibrium position of
the ith atom is x; ., =ai and y; .,=0. The Hamiltonian
of the system (FPU S model) is expressed as

N
H=T3 (p//2m)+ulg; +,—q;)*/2+B(g; 1, —q;)* /4}
1

=3 {p?/2m)+¢(q;,q;41)} , (18)

and we employ a periodic boundary condition gy ., =g¢;.
Let us now turn to thermal conductivity M =A along
the x axis. The Green-Kubo formula for A is

A=(ep T?L) ™" [ "dt (T (0, ) g (19)

where L is the length of the system L =aN and the heat
flux along the x axis J, is given, for our particular 1D
model, by

J.=(a/2m) 3 p;{0/3q;[#(q;,q; +1)—d(q; _1,9,)]}
=3 p:D*q;—1,9:,9;+1)/m . (20)

The expression (20) is obtained from a general expres-
sions for the heat flux [11,13]

j
_(1/2)Erij,xF,-j‘p,-/m ’ (21)
ij

with ¢;; the interaction between atom i and j, r;; =r1;—1;,
and F;;= —09¢,; /3r; the force on atom i due to atom j.
We note in our lattice model that the first term on the
right-hand side of Eq. (21) does not contribute to J, be-
cause p;,=0 and that atoms interact only between
nearest neighbors. What we must do next is to find {C;}
and {D;} in Eq. (1), which satisfy both Eq. (13) with
Joa=—J,, Eq. (20) and the AIT condition (3). As sug-
gested by Evans [12], we take

C;=0 and D;=D!— ¥ D}/N (22)
)
with D* defined by Eq. (20). Since 3D;=0 from Eq.

(22), we readily notice from Eq. (2) that 3p,(z)=0 for
t >0if 3p;(t =0)=0. Then from Eq. (13),
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FIG. 1. Heat flux per particle J/N as a function of the exter-
nal force F,. (a) for T=1,3 and (b) for T=100, 300, and 1000
(N=32,B=1.5).
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FIG. 2. Thermal conductivity A as a function of temperature
(N=32,B=1.5).
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FIG. 4. Time evolution of energy field for F, =0 (a), F, =0.003 (b), F, =0.005 (c), and F,=0.007 (d) (T=1, N=32, and B=1.5).
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(dH /dt)y=F, ()3 {D}—3 D} /N}p, /m
=Fe(t)2D,’*P,'/m =Fe(t)Jx . (23)

From the above it turns out that the choice Eq. (22) is the
right one. Taking B =J,, we have from Eq. (17) with
C=(kpT?’L)"},

A= Jim_ lim (J,()) /(LTF,) . (24)
Pid t— 0

IV. NUMERICAL RESULTS AND DISCUSSIONS

Now we proceed to numerical calculations. As units of
length, mass, and time we take a (lattice constant), m
(mass of a particle), and (m/,u)l/ 2 and nondimensional
temperature is defined to be k3 T'/(ua?) with T denoting
temperature and kg the Boltzmann constant. We will
present every physical quantity in a nondimensional form
following the prescription above. The important non-
linear parameter 8 in Eq. (18) becomes, after nondimen-
sionalization above, B’=Ba2/u, which we denote 3 here-
after.

In Fig. 1 we plot J=lim,_, . {J,(¢)) for a system with
N=32 and B=1.5 [15] as a function of an external field
F,. We observe linear dependence of J on F, and this
makes it possible to calculate A based on Eq. (24). In
passing it is remarked that similar linear dependence is
reported also for liquids [16]. In Fig. 2 temperature
dependence of A(T) is shown. As is expected from the
fact that low temperature corresponds to small nonlinear-
ity or near harmonicity, we observe a sharp increase of
A(T) as T becomes small. The data A(T) below T=1 are
consistent with the behavior A(T)«= T2, which is
derivable for a simple kinetic theory [10] A~ cvl with the
specific heat ¢ ( = T° at low temperature), velocity of en-
ergy carrier v < T''/2 and a mean free path [ < T~ !, As T
becomes large A(T) also increases with main cause prob-
ably coming from T dependence of c.

We show in Fig. 3 a Lyapunov exponent as a function
of T. Since nonlinear effects increase with T, the mono-
tonic increase of Lyapunov exponents is in accord with
our intuition. Comparing Fig. 3 with Fig. 2, we note that
one cannot simply relate A to Lyapunov exponents, con-
trary to the statement in Ref. [7] that large Lyapunov ex-
ponents correspond to small A. However, this is valid in
the low-temperature (weak nonlinear) region where as T
increases, the Lyapunov exponent increases while A be-
comes small. In Fig. 4 we show time variation of the en-
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FIG. 5. The same with Fig. 2 except that 5=10.

ergy field (energy of each particle) for T=1.0. In all the
figures we observe some energy excitations propagating
to the left or right for some duration of time before van-
ishing in thermal background. As F, becomes large these
excitations live longer and favor moving in the direction
of the external force F,, that is, to the positive x direc-
tion. From Fig. 1 we now know that these waves play an
important role in heat transport. However, at the present
we are not successful in deriving or identifying the excita-
tions based on Eq. (1) with Eqgs. (18) and (22).

Finally we comment on the dependence of A on 3, non-
linear parameter in the Hamiltonian Eq. (18), and on N,
the system size. In Fig. 5 we plot A(T) for N=32 and
B=10. Since B is about seven times larger than the one
in Fig. 2, the sharp increase of A(T) as T goes to zero
starts at relatively lower temperature in Fig. 5 than in
Fig. 2. As to N dependence of our NEMD let us give
some general comments. As N increases we observe first
that the linear F, dependence as shown in Fig. 1 is limit-
ed to a smaller F, region and J is not monotonic with F,
for larger F,. Second, since low-frequency phonons parti-
cipate in dynamics for larger systems, we need more com-
putation time to obtain J and A [17]. At the moment we
calculated A(T) for N=64 and observed only a slight in-
crease of A(T) as compared with the one for N=32, Fig.
2. Studies on A of other systems such as the diatomic
Toda lattice [18] and Frenkel-Kontorova system [3] to-
gether with the N dependence of A are in progress and
will be reported elsewhere.
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